首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   6篇
  国内免费   3篇
测绘学   5篇
大气科学   15篇
地球物理   78篇
地质学   45篇
海洋学   46篇
天文学   25篇
综合类   1篇
自然地理   9篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2017年   6篇
  2016年   10篇
  2015年   2篇
  2014年   8篇
  2013年   7篇
  2012年   5篇
  2011年   10篇
  2010年   9篇
  2009年   14篇
  2008年   17篇
  2007年   11篇
  2006年   18篇
  2005年   8篇
  2004年   12篇
  2003年   3篇
  2002年   9篇
  2001年   6篇
  2000年   4篇
  1999年   11篇
  1997年   6篇
  1995年   4篇
  1994年   5篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有224条查询结果,搜索用时 15 毫秒
141.
A new method for classifying mountain morphology, ‘mountain ordering,’ is proposed, and quantitative expressions for various morphological parameters of two ordered mountains in northern Japan were obtained using this method. Mountain order was defined in terms of the closed contour lines on a topographic map. A set of closed, concentric contour lines defines a first-order mountain. Higher-order mountains can be defined as a set of closed contour lines that contain lower-order mountains and that have only one closed contour line for each elevation; they are identified as m + 1th-order mountains, where m represents the order of the enclosed, lower-order mountains. The geomorphometry for a mountain ordered according to this definition permits the identification of systematic relationships between various morphological parameters. The relationships between mountain order and these morphological parameters follow a form similar to that of Horton's laws, and permit the calculation of the ratios of number, area and height; these parameters are sufficient to express the magnitude of a mountain's dissection. The size–frequency distribution for area and height shows self-similarity for ordered mountains, and determines their fractal dimensions. Furthermore, the relationship between area and height, which has the form of a power function, describes the relief structure of ordered mountains. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
142.
Fundamental scientific questions concerning the internal structure and dynamics of the Moon, and their implications on the Earth-Moon System, are driving the deployment of a new broadband seismological network on the surface of the Moon. Informations about lunar seismicity and seismic subsurface models from the Apollo missions are used as a priori information in this study to optimise the geometry of future lunar seismic networks in order to best resolve the seismic interior structure of the Moon. Deep moonquake events and simulated meteoroid impacts are the assumed seismic sources. Synthetic P and S wave arrivals computed in a radial seismic model of the Moon are the assumed seismic data. The linearised estimates of resolution and covariance of radial seismic velocity perturbations can be computed for a particular seismic network geometry. The non-linear inverse problem relating the seismic station positions to the linearised estimates of covariance and resolution of radial seismic velocity perturbations is written and solved by the Neighbourhood Algorithm. This optimisation study favours near side seismic station positions at southern latitudes in order to constrain the deep mantle structure from deep moonquake data at large epicentral distances. The addition of a far side station allows to divide by two the size of the error bar on the seismic velocity model. The monitoring of lunar impact flashes from the Earth allows to improve the radial seismic model in the top of the mantle by adding much more meteor impact data at short epicentral distances due to the high accuracy of the space/time location of these seismic sources. Such meteor impact detections may be necessary to investigate the 3D structure of the lunar crust.  相似文献   
143.
Geological evidence of severe tsunami inundation has been discovered in northern Japan. In the dune fields of Shimokita, in northernmost Tohoku, we have found two distinctive sand layers that are tsunami deposits. The run-up height of >20 m and inland inundation of at least 1.4 km are notably larger than any known historical case in Japan. The tsunami-genic earthquake that resulted in these deposits is thought to have taken place in the Kuril Forearc-Trench system nearly 700 years ago. The recurrence interval of major tsunamis originating in the Kuril subduction zone is about 400 years. Given that the most recent unusually large earthquake took place in AD 1611 (corresponding to the Keicho earthquake tsunami), the findings presented here increase the potential and hazard for an outsized tsunami striking the Pacific coast of northern Japan.  相似文献   
144.
13–8 Ma (middle to late Miocene) is a key period for understanding how the unique vegetation was established in Japan. Palynostratigraphy is useful for estimating the ages of plant-bearing strata deposited in shallow-marine and non-marine environments, but has low temporal resolution for this key period in Japan. We compiled Neogene and early Quaternary palynological records for the Hokuriku district of Central Japan to clarify palynostratigraphic events that may improve the temporal resolution. Our results showed that palynoassemblages changed considerably during 10–6.4 Ma in the Hokuriku district, following a relatively stable period during 13–10 Ma. We found that evergreen Quercus abundance increased at 11.5–10 Ma. We used these palynostratigraphic signatures, along with other biostratigraphic markers, to infer the ages of the Miocene plant-bearing Saikawa and Koderayama Formations in the southern Kanazawa area of Ishikawa Prefecture in the Hokuriku district. The ages of the Saikawa and Koderayama Formations were inferred as ~13 and 10–6.4 Ma, respectively. The palynoflora of the Koderayama Formation shows floristic similarity to that of present south China, implying that the unique flora of Japan established after the age of the Koderayama Formation.  相似文献   
145.
The 2010 Mentawai earthquake (magnitude 7.7) generated a destructive tsunami that caused more than 500 casualties in the Mentawai Islands, west of Sumatra, Indonesia. Seismological analyses indicate that this earthquake was an unusual “tsunami earthquake,” which produces much larger tsunamis than expected from the seismic magnitude. We carried out a field survey to measure tsunami heights and inundation distances, an inversion of tsunami waveforms to estimate the slip distribution on the fault, and inundation modeling to compare the measured and simulated tsunami heights. The measured tsunami heights at eight locations on the west coasts of North and South Pagai Island ranged from 2.5 to 9.3 m, but were mostly in the 4–7 m range. At three villages, the tsunami inundation extended more than 300 m. Interviews of local residents indicated that the earthquake ground shaking was less intense than during previous large earthquakes and did not cause any damage. Inversion of tsunami waveforms recorded at nine coastal tide gauges, a nearby GPS buoy, and a DART station indicated a large slip (maximum 6.1 m) on a shallower part of the fault near the trench axis, a distribution similar to other tsunami earthquakes. The total seismic moment estimated from tsunami waveform inversion was 1.0 × 1021 Nm, which corresponded to Mw 7.9. Computed coastal tsunami heights from this tsunami source model using linear equations are similar to the measured tsunami heights. The inundation heights computed by using detailed bathymetry and topography data and nonlinear equations including inundation were smaller than the measured ones. This may have been partly due to the limited resolution and accuracy of publically available bathymetry and topography data. One-dimensional run-up computations using our surveyed topography profiles showed that the computed heights were roughly similar to the measured ones.  相似文献   
146.
Contamination status of brominated flame retardants (BFRs) and persistent organic pollutants (POPs) in blubber of finless porpoises (Neophocaena phocaenoides) stranded along the coasts of Seto Inland Sea and Omura Bay in Japan were investigated. Levels of PCBs, DDTs and CHLs were significantly higher than those of HCHs, HCB, PBDEs and HBCDs. Concentrations of PBDEs and HBCDs, as well as organochlorine compounds in males increased with body length (p<0.05). Among 14 PBDE congeners analyzed, BDE-47 was the predominant, which is similar to those generally reported in biota. PBDEs, HBCDs and PCBs showed no obvious temporal trend in concentrations during the study period, suggesting continuous environmental release of these chemicals. On the other hand, levels of DDT, CHLs and HCHs have decreased. Concentrations of PCBs in liver trematode infected individuals were significantly higher than those in not infected individuals, implying there could be a relationship between contaminant levels and parasitic infection.  相似文献   
147.
The northeast (NE) Honshu arc was formed by three major volcano-tectonic events resulting from Late Cenozoic orogenic movement: continental margin volcanism (before 21?Ma), seafloor basaltic lava flows and subsequent bimodal volcanism accompanied by back-arc rifting (21 to 14?Ma), and felsic volcanism related to island arc uplift (12 to 2?Ma). Eight petrotectonic domains, parallel to the NE Honshu arc, were formed as a result of the eastward migration of volcanic activity with time. Major Kuroko volcanogenic massive sulfide (VMS) deposits are located within the eastern marginal rift zone (Kuroko rift) that formed in the final period of back-arc rifting (16 to 14?Ma). Volcanic activity in the NE Honshu arc is divided into six volcanic stages. The eruption volumes of volcanic rocks have gradually decreased from 4,600?km3 (per 1?my for a 200-km-long section along the arc) of basaltic lava flows in the back-arc spreading stage to 1,000?C2,000?km3 of bimodal hyaloclastites in the back-arc rift stage, and about 200?km3 of felsic pumice eruptions in the island arc stage. The Kuroko VMS deposits were formed at the time of abrupt decrease in the eruption volume and change in the mode of occurrence of the volcanic rocks during the final period of back-arc rifting. In the area of the Kuroko rift, felsic volcanism changed from aphyric or weakly plagioclase phyric (before 14?Ma), to quartz and plagioclase phyric with minor clinopyroxene (12 to 8?Ma), to hornblende phyric (after 8?Ma), and hornblende and biotite phyric (after 4?Ma). The Kuroko VMS deposits are closely related to the aphyric rhyolitic activity before 14?Ma. The rhyolite was generated at a relatively high temperature from a highly differentiated part of felsic magma seated at a relatively great depth and contains higher Nb, Ce, and Y contents than the post-Kuroko felsic volcanism. The Kuroko VMS deposits were formed within a specific tectonic setting, at a specific period, and associated with a particular volcanism of the arc evolution process. Therefore, detailed study of the evolutional process from rift opening to island arc tectonics is very important for the exploration of Kuroko-type VMS deposits.  相似文献   
148.
Current observations were made from 14 July 2006 to 31 March 2007, using an acoustic Doppler current profiler mounted on the seafloor near the eastern coast of the Noto Peninsula, Japan, to investigate strong coastal currents induced by large-amplitude coastal-trapped waves (CTWs) and near-inertial fluctuations (NIFs). The CTWs were generated by the winter monsoon and the passage of a typhoon during the observation period. Two types of strong currents with velocities higher than 50 cm s-1 were observed. One type, the strong current in winter (SCW), had the coast on the left to its direction of flow. This current was observed after a strengthening of the winter monsoon in January 2007. The other type, the strong current in fall (SCF), had the coast on the right to its direction of flow and was observed after the passage of a typhoon in September 2006. The SCW was inferred to be formed mainly by low-mode CTWs without NIFs. Compared to the SCW, the SCF had a more complicated vertical structure and time variations. The SCF was inferred to be generated by low-mode CTWs strengthened by NIFs. The contributions of NIFs to the strong coastal currents became important when the wind stress direction was rotating clockwise.  相似文献   
149.
The Japanese islands are positioned near the subduction zones, and large earthquakes have repeatedly occurred in marine areas around Japan. However, the number of permanent earthquake observatories in the oceans is quite limited. It is important for understanding generation of large earthquakes to observe seismic activities on the seafloor just above these seismogenic zones. An ocean bottom cabled seismometer (OBCS) is the best solution because data can be collected in real-time. We have developed a new compact OBCS system. A developed system is controlled by a microprocessor, and signals from accelerometers are 24-bit digitized. Clock is delivered from the global positioning system receiver on a landing station using a simple dedicated line. Data collected at each cabled seismometer (CS) are transmitted using standard Internet Protocol to landing stations. The network configuration of the system adopts two dual methods. We installed the first practical OBCS system in the Japan Sea, where large earthquakes occurred in past. The first OBCS system has a total length of 25 km and 4 stations with 5 km interval. Installation was carried out in August 2010. The CSs and single armored optical submarine cable were buried 1 m below the seafloor to avoid a conflict with fishing activity. The data are stored on a landing station and sent to Earthquake Research Institute, University of Tokyo by using the Internet. After the installation, data are being collected continuously. According to burial of the CSs, seismic ambient noises are smaller than those observed on seafloor.  相似文献   
150.
Sakitsu and Yokaku bays in Amakusa in west Kyushu, Japan, experienced inundation damage in the February 2009 meteotsunami (Abiki) event. The oscillation characteristics of both bays are investigated by taking field measurements and conducting numerical experiments with regard to flood mitigation with the aim to reduce the flood impact during Abiki events. A continuous wavelet transform and bandpass filtering both of the pressure and water level indicated that a sequence of pressure disturbances, as small as 1.0 hPa, caused the large amplified oscillation within Sakitsu Bay. When a sequence of ocean long waves entered the bay, a surf beat evolved in the early stages. Subsequently, the sea level began to undergo large amplitude oscillations, and there was a secondary peak of oscillation with a period of around 24 min, as seen in both field measurements and numerical experiments. A surf beat with the period of 12 min formed in Yokaku Bay owing to the continuous incidence of ocean waves with period of 12 min, but its wave period was almost half of that of the natural period of the bay. This surf beat may have entered Sakitsu Bay with natural period of 11.8 min and caused large water-level fluctuations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号